Novel Potent Imidazo[1,2-a]pyridine-N-Glycinyl-Hydrazone Inhibitors of TNF-α Production: In Vitro and In Vivo Studies

نویسندگان

  • Renata B. Lacerda
  • Natália M. Sales
  • Leandro L. da Silva
  • Roberta Tesch
  • Ana Luisa P. Miranda
  • Eliezer J. Barreiro
  • Patricia D. Fernandes
  • Carlos A. M. Fraga
چکیده

In this work, we describe the design, synthesis and pharmacological evaluation of novel imidazo[1,2-a]pyridine-N-glycinyl-hydrazone derivatives (1a-k) intended for use as inhibitors of tumor necrosis factor alpha (TNF-α) production. The compounds were designed based on the orally active anti-inflammatory prototype LASSBio-1504 (2), which decreases the levels of the pro-inflammatory cytokine TNF-α in vitro and in vivo. The in vitro pharmacological evaluation of the imidazo[1,2-a]pyridine compounds (1) showed that substitution of the N-phenylpyrazole core present in prototype 2 by a bioisosteric imidazo[1,2-a]pyridine scaffold generated anti-TNF-α compounds that were more potent than the previously described N-phenylpyrazole derivative 2 and as potent as SB-203580, a p38 MAPK inhibitor. The most active derivative (E)-2-(2-tert-butylimidazo[1,2-a]pyridin-3-ylamino)-N'-(4-chlorobenzylidene) acetohydrazide, or LASSBio-1749 (1i) was orally active as an anti-inflammatory agent in a subcutaneous air pouch model, reducing expressively the levels in vivo of TNF-α and other pro-inflammatory cytokines at all of the tested doses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of Novel Orally Active Anti-Inflammatory N-Phenylpyrazolyl-N-Glycinyl-Hydrazone Derivatives That Inhibit TNF-α Production

Herein, we describe the synthesis and pharmacological evaluation of novel N-phenylpyrazolyl-N-glycinyl-hydrazone derivatives that were designed as novel prototypes of p38 mitogen-activated protein kinase (MAPK) inhibitors. All of the novel synthesized compounds described in this study were evaluated for their in vitro capacity to inhibit tumor necrosis factor α (TNF-α production in cultured mac...

متن کامل

Synthesis and Molecular Docking studies of Some Tetrahydroimidazo[1,2-a] pyridine Derivatives as Potent α-Glucosidase Inhibitors

KAl(SO4)2.12H2O is found to efficiently and heterogeneously catalyze the one-pot three-component reaction of 2-(nitromethylene)imidazolidine, malononitrile and aldehydes under mild conditions to afford the corresponding tetrahydroimidazo[1,2-a]pyridine in good yields and short reaction times. Docking  study  of  some  compounds  in  the  active  site  of  α-glucosidase demonstrated  that  these...

متن کامل

Design, Synthesis and Biological Evaluation of New Imidazo[2,1-b]Thiazole Derivatives as Selective COX-2 Inhibitors

A new series of imidazo[2,1-b]thiazole analogs containing a methyl sulfonyl COX-2 pharmacophore was synthesized and evaluated for their COX-2 inhibitory activity. According to in-vitro COX-1/COX-2 inhibition data, all compounds (6a-g) were selective inhibitors of COX-2 isoenzyme with IC50 values in the highly potent 0.08-0.16 mM range. These results indicated that both potency and selectivity o...

متن کامل

Imidazo[1,2-a]pyridines: a potent and selective class of cyclin-dependent kinase inhibitors identified through structure-based hybridisation.

High-throughput screening identified the imidazo[1,2-a]pyridine and bisanilinopyrimidine series as inhibitors of the cyclin-dependent kinase CDK4. Comparison of their experimentally-determined binding modes and emerging structure-activity trends led to the development of potent and selective imidazo[1,2-a]pyridine inhibitors for CDK4 and in particular CDK2.

متن کامل

The cellular phenotype of AZ703, a novel selective imidazo[1,2-a]pyridine cyclin-dependent kinase inhibitor.

Because the majority of cancers exhibit direct or indirect deregulation of cyclin-dependent kinase (CDK) function, members of the CDK family are attractive targets for the development of anticancer agents. As part of an ongoing program, novel imidazopyridines were identified and developed as potent and selective CDK inhibitors. Here, we describe data on the in vitro biological activities of one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014